
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation. 1 Daniel Llamocca

Getting Started with the Hardware and Software

Platform

OBJECTIVES
▪ Learn about the DE2i-150 board and its components.
▪ Learn about the operating system: Ubuntu.
▪ Write, compile and execute simple C applications.

FUNDAMENTALS

REPOSITORY EXAMPLES

▪ Refer to the Tutorial: Embedded Intel for a comprehensive list of examples.

TERASIC DE2I-150 BOARD

▪ Refer to the board website or the Tutorial: Embedded Intel for User Manuals and Guides. We mention the information that

is relevant for the Microprocessor system (these documents heavily focus on the FPGA system):
✓ DE2i-150 Quick Start Guide: To quickly connect the power, mouse, keyboard, display for the Intel® AtomTM.
✓ DE2i-150 Getting Started Guide: Details on powering the Board.
✓ DE2i-150 FPGA System User Manual: Installation of WiFi Module and Antenna on DE2i-150.
✓ DE2i-150 Windows 7 User Manual: Boot DE2i-150 with a Bootable USB Flash Drive
✓ Installing Ubuntu OS on the DE2i-150: Some tips for Ubuntu OS installation. * We use a USB flash drive with an image.

COMPONENTS
▪ This board includes an Intel® AtomTM processor and an FPGA. Each device includes a range of peripherals connected to

them. These two devices are connected via PCI Express interface. Table I gives a brief overview of the platform’s features.

TABLE I. BRIEF OVERVIEW OF THE FEATURES OF THE TERASIC DE2I-150 FPGA DEVELOPMENT KIT.

Microprocessor FPGA System

Intel® AtomTM Dual Core Processor N2600, 1.6 GHz Cyclone IV EP4CGX150DF31 FPGA

1 MB L2 cache (512 KB per core) Three 50 MHz oscillator clock inputs

Intel® NM10 Express Chipset 128 MB SDRAM

2 GB DDR3 SDRAM 64 MB Flash Memory

64 GB SSD 4 MB SSRAM

HDMI, VGA output SD Card: SPI and 4-bit SD mode

4 USB ports Display: VGA, LCD

Gigabit Ethernet, 802.11 b/g/n Ethernet port

OPERATING SYSTEM AND PROGRAMMING LANGUAGE SUPPORT
▪ The SSD (hard drive) enclosed with the Development Kit has been pre-loaded with Yocto Operating System; this is from the

manufacturer (Terasic). Thus, Yocto Linux is the natural choice for the DE2i-150 FPGA Development Kit. However, as we
spent more time on the Yocto Linux platform, we ran into several issues:

✓ Yocto Linux slowdown: After working on it for a little while (~40 mins), the OS becomes unacceptable slow (even on the
command line) to the point that it was impractical to work on it. We suspect that there is an issue with the generation
of this specific Yocto Linux for the DE2i-150 Development Kit.

✓ Yocto Linux corrupted downloadable image: You might try to re-install the Yocto image provided by the manufacturer
(Terasic). However, after extensive tryouts (installation on different boards, independent image downloads), we suspect
the downloadable Yocto image to be corrupted. This was made evident in various ways: i) installation would not complete,
ii) completed installation that resulted in unacceptable outcomes: system would not start, GUI would load up incorrectly,
system would start and then freeze within minutes. By installing this image, any targeted board will be rendered unusable.

▪ Faced with this situation, we explored two alternatives:

✓ Windows 7: This is the first operating system we tried as the manufacturer (Terasic) already provides extensive

documentation (DE2i-150 Windows 7 User Manual). However, Microsoft has recently (Jan. 2020) discontinued Windows

7 and it is no longer possible to download the installation image.

✓ Ubuntu Linux: The Intel® document (Installing Ubuntu OS on the DE2i-150) provides details regarding Ubuntu Linux

installation on the Embedded Kit. Thus, we installed Ubuntu Linux 12.04.4 on the DE2i-150 Development Kits. The

http://www.secs.oakland.edu/~llamocca/emb_intel.html
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
http://www.secs.oakland.edu/~llamocca/emb_intel.html
http://www.secs.oakland.edu/~llamocca/Tutorials/Emb_Intel/Documentation/DE2i-150_QSG.pdf
http://www.secs.oakland.edu/~llamocca/Tutorials/Emb_Intel/Documentation/DE2i-150_Getting_Started_Guide.pdf
http://www.secs.oakland.edu/~llamocca/Tutorials/Emb_Intel/Documentation/DE2i-150_FPGA_User_Manual.pdf
http://www.secs.oakland.edu/~llamocca/Tutorials/Emb_Intel/Documentation/DE2i-150_Win7_User_Manual.pdf
http://www.secs.oakland.edu/~llamocca/Tutorials/Emb_Intel/Documentation/Installing-ubuntu-os-on-de2i-150.pdf

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation. 2 Daniel Llamocca

installation turned out to be way smoother than the document predicted. It has worked almost flawlessly: drivers were
working fine, our application run fine, and we had no issues installing specific packages (like TBB which provide difficult
under Yocto Linux). Moreover, so far, we have not experienced any slowdowns.
 We note that you might need to create your own FPGA PCIe driver to work with the FPGA and OS on the DE2i-150

Board (drivers are provided for Yocto).

▪ As a result, we have decided to use Ubuntu Linux 12.04.4 on the DE2i-150 Development board as our hardware/software

platform in this course.

▪ The Terasic Board you receive comes pre-installed with Ubuntu 12.04.4 and the proper version of the gcc and g++ compilers

(5.4.1). However, we recognize that during board usage, you might run into unexpected problems. In this case, the following
is the list of steps you need to complete to return the Terasic Board to the original Ubuntu settings.

OPERATING SYSTEM (UBUNTU) INSTALLATION
▪ Install Ubuntu 12.04.4

✓ Create a bootable USB stick with Rufus (or unibootd). The Ubuntu OS image (.iso) is available at the Ubuntu repository.
Select the PC (Intel x86) desktop CD image: ubuntu-12.04.4-desktop-i386.iso.

 You can also download the .iso file from here.

✓ The following steps are very similar to the ones mentioned in the DE2i-150 Windows 7 User Manual (page 10).

 Plug in your Ubuntu bootable USB flash drive to one of the USB ports on DE2i-150 Board.
 When the BIOS logo is shown, press F10 on the keyboard to enter the boot menu.
 Select the USB flash drive that is plugged into the board (e.g.: Sandisk Cruzer Spark) and press Enter to set the BIOS

of DE2i-150 to boot from the USB device.
 DO NOT select the EFI USB drive options.

 The DE2i-150 will reboot and load the Ubuntu OS loading screen.
✓ Follow the instructions to install Ubuntu (if Yocto is installed, select ‘Replace unknown Linux Distribution with Ubuntu’).
✓ You can set up any user and password as desired (username: student, computer name: ece4900@atom).

▪ Connect to Wifi. This should be automatic. If you run into problems, use the Wired Ethernet connection.
✓ It might ask to upgrade to 14.04 (due to driver issue with display, select NO if possible). Note that it is unclear whether

Ubuntu 14.04 would work fine in the Terasic Board.

PROGRAMMING LANGUAGES SUPPORT
▪ In these tutorials, we use the GCC (GNU Compiler Collection) that supports C and C++. We also use the Intel® TBB library

and POSIX threads (pthreads).

✓ By default, Ubuntu 12.04.4 comes pre-installed with gcc 4.6.3 version.

▪ Install the g++ compiler:

✓ sudo apt-get update → You should always run it before installing or upgrading packages on the command-line (unless

you've run it very recently). It fetches information about what packages are available in what versions from where.
✓ sudo apt-get install g++

 Note that this will install the 4.6.3 version (which is the newest that ubuntu 12.04 supports automatically)

▪ Install Intel® Threading Building Blocks (TBB) Library:

✓ This will allow the C++ compiler to work with TBB.
✓ To install TBB, go to the Terminal and type:

 sudo apt-get install libtbb-dev

▪ Some TBB features (e.g.: lambda expressions for parallel_for, parallel_reduce, parallel_pipeline) are not supported by the g++

4.6.3 version. We require the modifier std=c++11 (newer version of C++) at compilation. We thus need to install a newer

version of the C/C++ compilers.
✓ To see the compiler version: g++ --version , or gcc ---version (it should say 4.6.3)

✓ We can install newer versions (4.7, 4.8, 5.4.1). As this is not supported automatically by Ubuntu 12.04.4, the following
steps need to be followed to install 5.4.1 version:
 sudo apt-get purge g++ → (optional)

 sudo add-apt-repository ppa:ubuntu-toolchain-r/test

 sudo apt-get update

 sudo apt-get install gcc-5 g++-5

 sudo update-alternatives --install /usr/bin/gcc gcc /usr/bin/gcc-5 60 --slave /usr/bin/g++ g++

/usr/bin/g++-5

✓ After these steps are completed, TBB will work when the std=c++11 modifier is used at compilation.

✓ To verify the new version, type: g++ --version. It should list the version as 5.4.1.

http://old-releases.ubuntu.com/releases/12.04.1/
http://dllamocca.org/dig_library/ubuntu-12.04.4-desktop-i386.iso

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation. 3 Daniel Llamocca

ACTIVITIES

FIRST ACTIVITY: BOARD SETUP AND BASIC UTILITIES
▪ The DE2i-150 FPGA Development Kit is a full-featured computer system that fuses together the world of high-performance

processing (Intel® N2600 processor) and unbelievably high configurability (Altera Cyclone IV GX FPGA). Fig. 1 and Fig. 2
depict this board (front side and back side) indicating the key components.

▪ The board (as delivered to you) comes pre-installed with Ubuntu 12.04.4 version as well as with the 5.4.1 version of the gcc

and g++ compilers.

Figure 1. Terasic DE2i-150 FPGA Development Kit: Front Picture with components indicated. Source: Terasic website

Figure 2. Terasic DE2i-150 FPGA Development Kit: Back Picture with components indicated. Source: Terasic website

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation. 4 Daniel Llamocca

BOARD SETUP
▪ Connect the monitor (VGA or HDMI) as well as the keyboard and mouse.

✓ Refer to the DE2i-150 Quick Start Guide (page 2) for a useful illustration.

▪ Install the Wi-Fi module and Antenna (see DE2i-150 FPGA System User Manual, page 108). * In the board you receive, this

step will be already completed for you.

Powering up the DE2i-150 Board
▪ Connect the provided power cord to the power supply and plug the cord into a power outlet.
▪ Connect the supplied 12V DE2i-150 power adapter to the power connect (J1) on the DE2i-150 board. At this point, you

should see the 12 V LED (D33) turn on.

✓ Be careful not to plug the power adapter into the SATA power connector (see DE2i-150 Getting Started Guide, page 7).

▪ Click the Power ON/OFF Button (lower right corner) to boot the OS.
▪ The board should power on, emitting some beeps to indicate a successful load of the BIOS.
▪ Once Ubuntu screen loads, enter the login information: User: student, password: (sent to you via email, you can change it).

BASIC UTILITIES
▪ Even if you do not have experience with Linux, we will only use a few applications in this course:

✓ Files application (the counterpart of the File Explorer in Windows).

 You should know how to navigate the file system graphically, as well as create/delete/open folders and files.

✓ Terminal: This will be heavily used to compile and execute code.

 Terminal commands that you should explore: sudo, mkdir, cd, rm, ls, pwd.
 You should also know how to navigate the file system via the Terminal.

✓ Text Editor (Gedit, Kate). Kate is recommended (it includes line number).

 You might need to install Kate (sudo apt-get install -y kate)

 Feel free to install your favorite Text Editor or Integrated Development Environment.

▪ Once your system is up and running, you can transfer information via the Internet and a USB stick.

File System
▪ The contents of the SSD is known as its file system, and it is split into multiple sections each with a particular purpose. In

Linux, all drives, files, folder, and devices appear as a branch beneath what is known as the root file system (represented
as ‘/’). Some of these folders are areas of the SSD for storing files, while others are virtual directories for accessing different
portions of the OS or hardware.

✓ Open the Files utility (available on the left pane) and navigate to Computer. This will show you the Root folder. Table II

describes the most common directories.
✓ Your work files should be stored in the directory /home/<user name>.

✓ At this point, you should be ready to create new folder and files.

TABLE II. KEY VISIBLE DIRECTORIES IN THE UBUNTU LINUX DISTRIBUTION

/
 boot Contains the Linux kernel and other packages needed to start the system

bin
Operating system-related binary files, like those required to run the GUI (Graphical User Interface) are

stored here.

dev
Virtual directory (doesn’t actually exist on the SSD). All devices connected to the system (e.g., storage

devices, sound card, HDMI port) can be accessed from this directory.

etc Stores miscellaneous configuration files, including the list of users and their encrypted passwords.

home Each user gets a subdirectory beneath this directory to store all their personal files.

lib Storage space for libraries, which are shared pieces of code required by numerous different applications

media Special directory for removable storage devices, like USB memory sticks or external drives.

mnt This directory is used to manually mount (load) storage devices, such as external hard drives.

opt
Stores optional software not part of the operating system itself. It you install new software, it will

usually go here.

proc
Virtual directory, containing information about running programs which are know in Linux as

processes.

sbin Stores special binary files, primarily used by the root (superuse) account for system maintenance.

sys Directory where special operating system files are stored

tmp Temporary files are stored here automatically.

usr This folder provides storage for user-accessible programs.

var Virtual directory. Programs use it to store changing values or variables.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation. 5 Daniel Llamocca

SECOND ACTIVITY: FIBONACCI SERIES
▪ Compute the elements of the following series for 𝑛 > 1:

𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2, 𝐹0 = 0,𝐹1 = 1

▪ A straightforward implementation in C is shown below:

#include <stdlib.h>

#include <stdio.h>

int main (int argc, char **argv) {

 int i, n;

 int *f;

 // Reading Input arguments

 // argc: # of arguments.

 // argv: array of strings holding the arguments. argv[0]: ./fibo, argv[1]: n

 if (argc != 2) {

 printf ("Warning: Usage: %s n\n", argv[0]);

 printf ("Using n = 10 as default\n");

 n = 10;

 }

 else n = atoi(argv[1]);

 if (n < 1) { printf ("Incorrect number of elements\n"); return -1; }

 f = (int *) calloc (n, sizeof(int)); // Dynamic memory allocation

 f[0] = 0; f[1] = 1;

 for (i = 2; i < n; i++) f[i] = f[i-1] + f[i-2];

 for (i = 0; i < n; i++) printf ("F[%d] = %d\n", i, f[i]);

 free(f);

 return 0;

}

✓ Note that by using int, we are restricting our results to -231 to 231 – 1.

▪ Create this file (use Gedit or Kate).
▪ Application file: fibo.c

▪ Compile this code:

gcc fibo.c -Wall -o fibo 

✓ The -Wall option will check for all kinds of warnings like unused variables (recommended practice).

▪ Execute this application:

./fibo 
✓ By default, it would compute Fibonacci numbers from 𝐹0 to 𝐹9.
✓ This application allows the specification of a parameter (the largest desired index of the Fibonacci series):

./fibo n // This computes 𝐹0 to 𝐹𝑛−1.

✓ For example, you can execute:
./fibo 20 // This computes 𝐹0 to 𝐹19.

THIRD ACTIVITY (SAXPY)
▪ Implement SAXPY (Scaled Vector Addition):

𝑦⃗ ← 𝑎𝑥⃗ + 𝑦⃗

▪ A serial implementation is shown below. We use three different files:

✓ saxpy_ex.c
#include <stdio.h>

#include <stdlib.h>

#include <math.h>

#include <sys/time.h> // for gettimeofday()

#include "saxpy_fun.h" // list the functions in .h file, implement the functions on saxpy_fun.c

#define N 20

int main() {

 float y[N], x[N];

 float a = 1.618;

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation. 6 Daniel Llamocca

 struct timeval start, end; // structure with us and s. Resolution: 1 us.

 long t_us;

 // Initializing input vectors

 saxpy_init (x, y, N);

 saxpy_print (y, N); saxpy_print (x, N);

 gettimeofday(&start, NULL); // Measuring processing time: start

 saxpy (a,x,y, N);

 gettimeofday(&end, NULL); // Measuring processing time: start

 // gettimeofday: returns current time. So, when the secs increment, the us resets to 0.

 saxpy_print (y, N); // printing resulting vector 'y'

 printf ("start: %ld us\n", start.tv_usec); // start.tv_sec

 printf ("end: %ld us\n", end.tv_usec); // end.tv_sec;

 t_us = (end.tv_sec - start.tv_sec)*1000000 + end.tv_usec - start.tv_usec;

 printf ("Elapsed time: %ld us\n", t_us);

 return 0;

}

✓ saxpy_fun.c
#include <stdlib.h>

#include <stdio.h>

#include <math.h>

#include "saxpy_fun.h"

void saxpy (float a, float *x, float *y, int SIZE) {

 int i;

 for (i = 0; i < SIZE; i++) {

 y[i] = a*x[i] + y[i]; }

}

void saxpy_init (float *x, float *y, int SIZE) {

 int i;

 for (i = 0; i < SIZE; i++) {

 x[i] = sin(i*3.416/SIZE);

 y[i] = cos(i*3.416/SIZE);

 }

}

void saxpy_print (float *y , int SIZE) {

 int i;

 printf ("Vector is: \n");

 for (i = 0; i < SIZE; i++) printf("y[%d] = %4.4f\n", i, y[i]);

}

✓ saxpy_fun.h

#include <stdlib.h>

#include <stdio.h>

#include <math.h>

void saxpy (float a, float *x, float *y, int SIZE);

void saxpy_init (float *x, float *y, int SIZE);

void saxpy_print (float *y , int SIZE);

▪ Create this file (use Gedit or Kate).
▪ Application files: saxpy_ex.c, saxpy_fun.h, saxpy_fun.c

✓ Note that we measure the processing time (us) using gettimeofday().

✓ This example includes a main file (saxpy_ex.c), a header (.h) file for function declarations, and another .c file for

function definitions.

▪ Compile this code:

✓ First method:

gcc -Wall saxpy_ex.c saxpy_fun.c -o saxpy_ex -lm 

 The -lm modifier allows for the math.h library to be used.

✓ Second method: Using a makefile

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation. 7 Daniel Llamocca

Makefile:

Compiler/linker setup --

Linux-specific flags.

PLATFORM = linux

CC = gcc

CFLAGS = -O3 -Wall

OSLIBS =

LDFLAGS =

OBJS = saxpy_ex

all: $(OBJS)

saxpy_ex: saxpy_ex.c saxpy_fun.o

 $(CC) $(CFLAGS) -o saxpy_ex saxpy_ex.c saxpy_fun.o -lm

library

saxpy_fun.o: saxpy_fun.c saxpy_fun.h

 $(CC) $(CFLAGS) -c saxpy_fun.c -lm

Maintenance and stuff --

clean:

 rm -f $(OBJS) *.o core

 Once the Makefile is created, you can do:
 make all: all OBJS are compiled and executable is available

 make clean: cleans indicated files in the Makefile.

▪ Execute this application (Fig. 3 depicts execution on the Terasic board):

./saxpy_ex 

Figure 3. SAXPY Execution on Terasic DE2i-150 FPGA Development Kit.

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation. 8 Daniel Llamocca

FOURTH ACTIVITY (BUBBLE SORT)
▪ Sort an array of numbers via the bubble sort algorithm:

procedure bubbleSort (A: list)

 n = length(A)

 p = n-1

 for i = 0 to n-2 do

 for j = 0 to p-1 do

 if A[j] > A[j+1] then

 swap (A[j], A[j+1])

 end if

 end for

 p = p-1

 end for

end procedure

For every i, compare (and swap) pairs.

After each iteration one less element

(the last one) is needed to be compared.

i = 0: pairs (0,1), (1,2), (2,3), (3,4), (4,5)

i = 1: pairs (0,1), (1,2), (2,3), (3,4)

i = 2: pairs (0,1), (1,2), (2,3)

i = 3: pairs (0,1), (1,2)

i = 4: pairs (0,1)

▪ A serial implementation is shown below. We use three different files:
✓ bsort.c

#include <stdio.h>

#include <stdlib.h>

#include <sys/time.h> // for gettimeofday()

#include "bsort_fun.h"

int main() {

 struct timeval start, end; // structure with us and s. Resolution: 1 us.

 long t_us;

 int arr[] = {17, 65, 12, 41, 9, 31, 87, 28}; // arbitrary array defined

 // Getting the size of the array:

 int n = sizeof(arr)/sizeof(arr[0]);

 printf ("Total # of bytes in array: %ld\n”, sizeof(arr));

 printf (“# of bytes per array element: %ld\n", sizeof(arr[0]));

 printf ("n = %d\n", n);

 printf("Original array: \n"); printArray(arr, n);

 // Measuring processing time:

 gettimeofday(&start, NULL);

 bubbleSort(arr, n);

 gettimeofday(&end, NULL);

 printf("Sorted array: \n"); printArray(arr, n);

 printf ("start: %ld us\n", start.tv_usec); // start.tv_sec

 printf ("end: %ld us\n", end.tv_usec); // end.tv_sec;

 t_us = (end.tv_sec - start.tv_sec)*1000000 + end.tv_usec - start.tv_usec;

 printf ("Elapsed time: %ld us\n", t_us);

 return 0;

}

✓ bsort_fun.c
#include <stdlib.h>

#include <stdio.h>

#include "bsort_fun.h"

void swap(int *xp, int *yp) {

 int tmp = *xp; // value pointed by pointer xp

 *xp = *yp;

 *yp = tmp;

}

void bubbleSort(int *arr, int n) {

 int i, j;

 int p = n-1;

 for (i = 0; i < n-1; i++) // counter for all the passes: 0 to (n-2)th pass

 for (j = 0; j < p; j++)

 if (arr[j] > arr[j+1])

 swap(&arr[j], &arr[j+1]);

 p = p -1;

}

64 35 12 22 11 90n=6

35 12 22 11 64 90

12 22 11 35 64 90

12 11 22 35 64 90

11 12 22 35 64 90

11 12 22 35 64 90

i=0,p=5:

i=1,p=4:

i=2,p=3:

i=3,p=2:

i=4,p=1:

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
Tutorial: High-Performance Embedded Programming with the Intel® AtomTM Platform RECRLAB@OU

* This material is based upon work supported by Intel® Corporation. 9 Daniel Llamocca

void printArray(int *arr, int n) {

 int i;

 for (i = 0; i < n; i++)

 printf("%d ", arr[i]);

 printf("\n");

}

✓ bsort_fun.h

#include <stdlib.h>

#include <stdio.h>

void swap(int *xp, int *yp);

void bubbleSort(int *arr, int n);

void printArray(int *arr, int n);

▪ Create this file (use Gedit or Kate).
▪ Application files: bsort.c, bsort_fun.h, bsort_fun.c

✓ Note that we measure the processing time (us) using gettimeofday().

✓ This example includes a main file (bsort.c), a header (.h) file for function declarations, and another .c file for function

definitions.

▪ Compile this code:

✓ First method:

gcc -Wall bsort.c bsort_fun.c -o bsort 

✓ Second method: Using a makefile

Makefile:

Compiler/linker setup --

Linux-specific flags.

PLATFORM = linux

CC = gcc

CFLAGS = -O3 -Wall

OSLIBS =

LDFLAGS =

OBJS = bsort

all: $(OBJS)

bsort: bsort.c bsort_fun.o

 $(CC) $(CFLAGS) -o bsort bsort.c bsort_fun.o

library

bsort_fun.o: bsort_fun.c bsort_fun.h

 $(CC) $(CFLAGS) -c bsort_fun.c

Maintenance and stuff --

clean:

 rm -f $(OBJS) *.o core

 Once the Makefile is created, you can do:
 make all: all OBJS are compiled and executable is available

 make clean: cleans indicated files in the Makefile.

▪ Execute this application:

./bsort 

	Objectives
	Fundamentals
	Repository Examples
	Terasic DE2i-150 Board
	Components

	Operating System and Programming Language Support
	Operating System (Ubuntu) Installation
	Programming Languages Support

	Activities
	First Activity: Board Setup and basic Utilities
	Second Activity: Fibonacci Series
	Third Activity (SAXPY)
	Fourth Activity (Bubble Sort)

